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Abstract

Purpose – The purpose of this paper is to consider steady two-dimensional mixed convection flow
along a vertical semi-infinite power-law stretching sheet. The velocity and temperature of the sheet
are assumed to vary in a power-law form.
Design/methodology/approach – The problem is formulated in terms of non-similar equations.
These equations are solved numerically by an efficient implicit, iterative, finite-difference method in
combination with a quasi-linearization technique.
Findings – It was found that the skin-friction coefficient increased with the ratio of free-stream
velocity to the composite reference velocity and the buoyancy parameter while it decreased with
exponent parameter. The heat transfer rate increased with the Prandtl number, buoyancy parameter
and the exponent parameter.
Practical implications – A very useful source of information for researchers on the subject of
convective flow over stretching sheets.
Originality/value – This paper illustrates mixed convective flow over a power-law stretched
surface with variable wall temperature.
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Nomenclature

Cfx local skin-friction coefficient

Cp specific heat at constant pressure

f dimensionless stream function

g acceleration due to gravity

Grx local Grashof number

Nux local Nusselt number

m exponent of velocity and
temperature

Pr Prandtl number

Rex local Reynolds number

T temperature

U(x) composite reference velocity

Uw(x) moving plate velocity

U1(x) free stream velocity

u velocity component in the
x direction

P.M. Patil expresses his sincere thanks to Dr Ajith Prasad, Principal, JSS College of Science,
Vidyagiri, Dharwad, India, for his constant encouragement in research activities.
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v velocity component in the y direction

x, y Cartesian coordinates

Greek symbols

� thermal diffusivity

� coefficient of thermal expansion

�; � transformed variables

� buoyancy parameter

� dynamic viscosity

� kinematic viscosity

	 density

 stream function

Subscripts

w,1 conditions at the wall and infinity,
respectively

�, � denote the partial derivatives
w.r.t. these variables, respectively

1. Introduction
The problem of flow and heat transfer over a continuous moving vertical surface with
velocity UW parallel the free-stream velocity U1, finds numerous and wide ranging
applications in many engineering and manufacturing processes. Examples of practical
applications are the cooling of an infinite metallic plate in a cooling bath, the boundary
layers along material handling conveyers and along a liquid form in condensation
processes, glass blowing, continuous casting spinning of fibres, etc. The study of
problems involving viscous fluid flow over a stretching sheet is an important type of
flow occurring in many engineering manufacturing processes. Such processes are wire
and fibre coating, food stuff processing, heat treated materials travelling between a
feed roll and a wind-up roll or materials manufactured by extrusion, glass fibre and
paper production, cooling of metallic sheets or electronic chips, crystal growing,
drawing of plastic sheets, etc. In these processes, the quality of the final product
of desired characteristics depends on the rate of cooling in the process and the process
of stretching. In view of such applications Crane (1970) initiated the analytical study of
boundary layer flow of a Newtonian fluid over a linearly stretching surface. Gupta and
Gupta (1977) have analysed heat and mass transfer from an isothermal stretching
sheet with suction or blowing effects. Chen and Char (1988) extended the works of
Gupta and Gupta (1977) to that of a non-isothermal stretching sheet. Grubka and
Bobba (1985b) have studied the heat transfer by considering the power-law variation of
surface temperature. Afzal (1993) has been studied the heat transfer effects from a
stretching surface. Ali and Al-Yousef (1998) have investigated the problem of laminar
mixed convection adjacent to a uniformly moving vertical plate with suction or
injection. In this investigation, similarity solutions were reported for the boundary
layer flow subject to power-law velocity and temperature boundary conditions. Tsou
et al. (1967) showed experimentally that the flow and heat transfer problem from a
continuously moving surface is a physically realizable one and studied its basic
characteristics. Later, various aspects of the problem have been treated by many
authors. Soundalgekar and Murty (1980) have studied the effects of power-law surface
temperature variation on the heat transfer from a continuous moving surface with
constant surface velocity. The effects of variable surface temperature and linear
surface stretching were examined by Grubka and Bobba (1985). Similarity solutions
were reported by Ali (1994) for the case of power-law surface velocity and three
different thermal boundary conditions. Ali (1995) has extended his work for the
stretching surface subject to suction or injection. Moutsoglou and Chen (1980) have
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considered buoyancy effects on flow and heat transfer from an inclined continuous
sheet with either uniform wall temperature or uniform surface heat flux. An analysis
of mixed convection heat transfer from a vertical continuously stretching sheet has
been presented by Chen (1998). In this presentation, similarity solutions were obtained
for an isothermal sheet moving with surface velocity proportional to x1/2 and a linearly
stretching sheet subject to a linear wall temperature distribution. A detailed numerical
study of the problem of mixed convection flow adjacent to an inclined continuously
stretching sheet has been reported by Chen (2000a).

Abdelhafez (1985) and Chappidi and Gunnerson (1989) have studied laminar
boundary layer for two cases where Uw > U1 and Uw < U1 are treated separately
and formulated two sets of boundary value problems. Afzal et al. (1993) formulated a
single set of governing equations by employing composite velocity as U ¼ Uw þ U1
irrespective of whether Uw > U1 or Uw < U1. Lin and Haung (1994) were analysed
for horizontal isothermal plate moving in parallel or reversibly to a free stream where
similarity and non-similarity equations are used to obtain the flow and thermal fields.
Considering the reference velocity U(x) ¼ Uw(x), the flow on a continuously stretching
sheet has been studied by Afzal and Varshney (1980) as mentioned in Aziz and Na
(1986). Afzal (2003) has obtained the similarity solutions of laminar boundary layer
driven by the stretching surface and pressure gradient, each proportional to the same
power-law of the down-stream coordinate based on composite reference velocity. Heat
transfer characteristics of a non-isothermal surface moving parallel to a free stream are
studied by Chen (2000b). In this study, heat transfer results are predicted two surface
heating conditions, power-law variation in wall temperature and uniform surface heat
flux. The detailed analyses laminar fluid flow problems due to the combined motions of
a bounding surface and free stream in the same direction have been discussed by
Abraham and Sparrow (2005) and Sparrow and Abraham (2005). They have used the
relative velocity model where one of the participating media is in motion. Ishak et al.
(2007) examined the boundary layer flow over a continuously moving thin needle in a
parallel stream. The effects of transpiration on the flow and heat transfer over a
moving permeable surface in a parallel stream are analysed by Ishak et al. (2009a, b).
The development of the boundary layer on a fixed or moving surface parallel to a
uniform free stream in presence of surface heat flux has been investigated by Ishak
et al. (2009).

The present numerical study investigates the steady mixed convection flow along a
semi-infinite vertical power-law stretching sheet. The stretching sheet is considered to
move with a power-law velocity parallel to the power-law free-stream velocity and it is
assumed to subject to a power-law wall temperature. The coupled non-linear partial
differential equations governing the flow have been solved numerically using an
implicit finite difference method in combination of quasi-linearization technique
(Inouye, 1974; Roy and Saikrishnan, 2003). Results are compared with some results
reported by Tsou et al. (1967), Soundalgekar and Murty (1980), Ali (1995), Moutsoglou
and Chen (1980) and Chen (1998) and are found to be in excellent agreement.

2. Mathematical formulation
Consider a steady two-dimensional incompressible viscous mixed convection
boundary layer flow along a semi-infinite vertical power-law stretching sheet moving
with velocity UW(x) ¼ U0wxm in the x-direction. The x-axis is taken along the plate in
the vertically upward direction and the y-axis is taken normal to it. Figure 1 shows the
coordinate system and physical model for the flow configuration. The free-stream
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velocity U1(x) ¼ U01xm and plate velocity UW(x) ¼ U0wxm are varying in the same
direction. The stretching sheet is assumed to be subject to power-law wall temperature
TW(x) ¼ T1 þ Ax2m�1. The buoyancy force arises due to the temperature difference
in the fluid. All thermophysical properties of the fluid in the flow model are assumed
constant except the density variations causing a body force in the momentum equation.
The Boussinesq approximation is invoked for the fluid properties to relate density
changes, and to couple in this way the temperature field to the flow field (Schlichting,
2000). Under these assumptions, the equations of conservation of mass, momentum
and energy governing the mixed convection boundary layer flow over a moving
vertical plate are given by:

@u

@x
þ @v

@y
¼ 0; ð1Þ

u
@u

@x
þ v

@u

@y
¼ � @

2u

@y2
� g�ðT � T1Þ; ð2Þ

u
@T

@x
þ v

@T

@y
¼ �@

2T

@y2
: ð3Þ

The physical boundary conditions for the problem are given by:

y ¼ 0 : u ¼ UW ðxÞ; v ¼ 0; T ¼ TW ðxÞ;
y!1 : u! U1ðxÞ; T ! T1;

ð4Þ

Figure 1.
Physical model and
coordinate system
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where the stretching sheet velocity UW(x), the free-stream velocity U1(x) and the wall
temperature TW(x) are given by:

UW ðxÞ ¼ U0wx m; U1ðxÞ ¼ U01x m; TW ðxÞ ¼ T1 þ Ax2m�1:

Applying the following transformations

� ¼ UðxÞx
�

� �1=2

; � ¼ UðxÞ
�x

� �1=2

y;  ðx; yÞ ¼ ð�UðxÞxÞ1=2f ð�; �Þ;

u ¼ @ 
@y
; v ¼ � @ 

@x
; T � T1 ¼ ðTW ðxÞ � T1Þ�ð�; �Þ;

UðxÞ ¼ UW ðxÞ þ U1ðxÞ; u ¼ U0xmf�; Pr ¼ �

�
; � ¼ Grx

Re2
x

;

v ¼ �ð�U0Þ1=2xðm�1Þ=2 mþ 1

2

� �
½ f ð�; �Þ þ � f�� þ

m� 1

2

� �
� f�

� �
;

Rex ¼
U0xmþ1

�
;Grx ¼

g�ðTW ðxÞ � T1Þx3

�2
;

ð5Þ

to Equations (1)-(3), we find that Equation (1) is identically satisfied, and Equations (2)
and (3) reduce to:

F�� þ
mþ 1

2

� �
f F� �mF2 � �� ¼ mþ 1

2

� �
�ðFF� � f�F�Þ; ð6Þ

��� þ Pr
mþ 1

2

� �
f �� � Prð2m� 1ÞF� ¼ Pr

mþ 1

2

� �
�ðF�� � f���Þ; ð7Þ

where f ¼
Ð �

0 Fd� þ fw; fw ¼ 0.
In Equation (6), � that represents the buoyancy force effect on the flow field

has � signs; the plus sign indicates the buoyancy-upward (or buoyancy-assisted) flow,
while the negative sign stands for buoyancy-downward (or buoyancy-opposed) flow.

The non-dimensional boundary conditions become:

F ¼ 1� "; � ¼ 1 at � ¼ 0

F ! "; �! 0; as � !1;
ð8Þ

where " ¼ ðU1ðxÞ=ðU01ðxÞ þ U0wðxÞÞÞ corresponds to the ratio of free-stream
velocity to the composite reference velocity.

The local skin-friction coefficient Cfx is defined as:

Cfx ¼ �
@u=@y

1

2
	U 2

¼ 2Re
�1

2
x F�ð�; 0Þ

i:e: CfxRe
1
2
x ¼ 2F�ð�; 0Þ:

ð9Þ
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The local heat transfer rate in terms of Nusselt number can be expressed as:

Nux ¼ �x
@T=@y

ðTwðxÞ � T1Þ
¼ �Re

1
2
x��ð�; 0Þ

i:e: Nux Re
�1

2
x ¼ ���ð�; 0Þ:

ð10Þ

3. Method of solution
The non-linear coupled partial differential Equations (6) and (7) subject to the
boundary conditions (8) have been solved numerically using an implicit finite-
difference scheme in combination with the quasi-linearization technique (Inouye and
Tate, 1974). An iterative sequence of linear equations carefully constructed to
approximate the non-linear Equations (6) and (7) for achieving quadratic convergence
and monotonicity. Using the quasi-linearization technique, the non-linear coupled
partial differential Equations (6) and (7) with boundary conditions (8) are replaced by
the following sequence of linear partial differential equations:

F iþ1
�� þ Ai

1F iþ1
� þ Ai

2F
iþ1 þ Ai

3F iþ1
� þ Ai

4� iþ1 ¼ A i
5; ð11Þ

� iþ1
�� þ B i

1�
iþ1
� þ B i

2� iþ1 þ B i
3�

iþ1
� þ B i

4F iþ1 ¼ Bi
5: ð12Þ

The coefficient functions with iterative index i are known and the functions with
iterative index (i þ 1) are to be determined. The corresponding boundary conditions
are given by:

F iþ1 ¼ 1� "; �iþ1 ¼ 1 at � ¼ 0;

F iþ1 ¼ "; �iþ1 ¼ 0; at � ¼ �1:
ð13Þ

The coefficients in Equations (11) and (12) are given by:

Ai
1 ¼

mþ 1

2

� �
ð f þ � f�Þ; Ai

2 ¼ �
mþ 1

2

� �
�F� � 2mF;

Ai
3 ¼ �

mþ 1

2

� �
�F; Ai

4 ¼ �; Ai
5 ¼ �

mþ 1

2

� �
�FF� �mF2;

B i
1 ¼ Pr

mþ 1

2

� �
ð f þ � f�Þ; B i

2 ¼ �Prð2m� 1ÞF;

B i
3 ¼ �Pr

mþ 1

2

� �
�F; B i

4 ¼ �Prð2m� 1Þ�� Pr
mþ 1

2

� �
���;

B i
5 ¼ �Prð2m� 1ÞF�� Pr

mþ 1

2

� �
���F:

ð14Þ

Since the method is presented for ordinary differential equations by Inouye and Tate
(1974) and also presented for partial differential equations in a recent study by Roy and
Saikrishnan (2003), its detailed description is not provided for the sake of brevity. At
each iteration step, the sequence of linear partial differential Equations (11) and (12)
were expressed in difference form using central difference scheme in the �-direction
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and backward difference scheme in �-direction. Thus in each step, the resulting
equations were then reduced to a system of linear algebraic equations with a block tri-
diagonal matrix, which is solved by Varga’s algorithm (2000). To ensure the
convergence of the numerical solution to the exact solution, step sizes �� and �� are
optimized and taken as 0.01 and 0.005, respectively. The results presented here are
independent of the step sizes at least up to the fourth decimal place. A convergence
criterion based on the relative difference between the current and previous iteration
values is employed. When the difference reaches 10�4, the solution is assumed to have
converged and the iteration process is terminated. Accuracy of the presented approach
is verified by direct comparison with the results previously reported by Tsou et al.
(1967), Soundalgekar and Murty (1980), Ali (1995), Moutsoglou and Chen (1980) and
Chen (1998). The results of this comparison are presented in Table I and are found to be
in excellent agreement.

4. Result and discussion
Computations have been carried out for various values of Pr(0.7 � Pr � 7.0),
�(�1.0 � � � 5.0), "(0.1 � " � 0.9) and m(0 � m � 1). The edge of the boundary
layer (�1) has been taken between 5.0 and 8.0 depending on the values of the
parameters.

The effects of buoyancy parameter (�) and Prandtl number (Pr) on the velocity and
temperature profiles (F(�, �), �(�, �)) are presented in Figures 2-5. The velocity profiles
F(�, �) are displayed in Figures 2 and 3 for different values of exponent parameter
m ¼ 0 and m ¼ 1.0. When m ¼ 0, results correspond to uniform motion while
m ¼ 1.0, corresponds to linear stretching surface. In buoyancy aiding flow (� > 0), the
buoyancy force shows the significant overshoot in the velocity profiles near the surface
for lower Prandtl number fluid (Pr ¼ 0.7, air), whereas for higher Prandtl number fluid
(Pr ¼ 7.0, water) the velocity overshoot is not present. The magnitude of the overshoot
increases with the buoyancy parameter �(� > 0) while decreases as the Prandtl
number (Pr) increases. The physical reason is that the buoyancy force (�) affects more
in smaller Prandtl number fluid (air, Pr ¼ 0.7) due to the less viscosity of the fluid.
Hence, the velocity increases within the moving boundary layer as the assisting
buoyancy force acts like a favourable pressure gradient. Thus, the velocity overshoot
occurs and for higher Prandtl number fluids the overshoot is not present because
higher Prandtl number (Pr) (water, Pr ¼ 7.0) means more viscous fluid which makes it
less sensitive to the buoyancy force. Comparative studies in Figures 2 and 3 indicate
that the magnitude of the velocity overshoot decreases remarkably when m ¼ 1.0 i.e.
linear stretching surface within the boundary layer. It is interesting to note from the
Figures 2 and 3 that for opposing buoyancy flow, i.e. for negative value of buoyancy
parameter (� < 0), the buoyancy opposing force reduces the magnitude of the velocity

Table I.
Comparison of � ��(0)

for � ¼ 0, � ¼ 0, " ¼ 0,
m ¼ 0 and n ¼ 0 and

selected values of Pr to
previously

published work

Pr 0.7 1.0 2.0 7.0 10 100

Tsou et al. (1967) 0.3492 0.4438 – – 1.6804 5.545
Soundalgekar and Murty (1980) 0.3508 – 0.6831 – 1.6808 –
Ali (1995) 0.3476 0.4416 – – 1.6713 –
Moutsoglou and Chen (1980) 0.34924 – – 1.38703 – –
Chen (1998) 0.34925 0.44375 0.68324 1.38619 1.68008 5.54450
Present work 0.35004 0.44401 0.68314 1.38625 1.68011 5.54610
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significantly within the boundary layer for low Prandtl number fluid (Pr ¼ 0.7, air) as
well as for high Prandtl number fluid (Pr ¼ 7.0, water).

The effect of the buoyancy parameter (�) on temperature profile �(�, �) is
comparatively less as shown in the Figures 4 and 5. Further, it is observed from the
Figures 4 and 5 that an increase in the (higher) Prandtl number (Pr) (water, Pr ¼ 7.0)
clearly induces a strong reduction in the temperature of the fluid and thus results into
the thinner thermal boundary layer. Prandtl number Pr is inversely proportional to
thermal conductivity and lower Prandtl number (Pr) fluids will possess higher thermal
conductivities and therefore diffuses heat energy more than momentum. Comparative
studies on Figures 4 and 5 indicate that the magnitude of the temperature decreases

Figure 2.
Effects of � and Pr on
velocity profile for
1 ¼ 0.5, j ¼ 0.5 and
m ¼ 0.0

Figure 3.
Effects of � and Pr on
velocity profile for
1 ¼ 0.5, j ¼ 0.5 and
m ¼ 1.0
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significantly when m ¼ 1.0 i.e. linear stretching surface within the thermal boundary
layer.

Figure 6 depicts the effects of " (the ratio of free-stream velocity to the composite
reference velocity) and m (exponent parameter) on the velocity profile F(�,�) for
� ¼ 1.0, � ¼ 0.5 and Pr ¼ 0.7. The velocity is strongly depending on " because it
occurs in the boundary condition for F(�,�). It has been observed that the magnitude of
the velocity within the boundary layer increases with the increase of " while decreases
as m increases from m ¼ 0.0 to m ¼ 1.0. The physical reason is that the assisting
buoyancy force due to thermal gradients acts like a favourable pressure gradient
which accelerates the fluid for uniform motion when m ¼ 0.0 causing the velocity

Figure 4.
Effects of � and Pr on

temperature profile
for 1 ¼ 0.5, j ¼ 0.5 and

m ¼ 0.0

Figure 5.
Effects of � and Pr on

temperature profile
for 1 ¼ 0.5, j ¼ 0:5

and m ¼ 1.0
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overshoot near the surface within the moving boundary layer. The velocity overshoot
reduces significantly when m ¼ 1.0 (linear stretching surface) as " increases.

The effects of " (the ratio of free-stream velocity to the composite reference velocity) and
velocity exponent parameter m on the skin-friction coefficient ðCfxRe1=2

x Þ when � ¼ 2.0
and Pr ¼ 7.0, are shown in Figure 7. Results indicate that the skin-friction coefficient
ðCfxRe1=2

x Þ increases with " but decreases when velocity exponent parameter m increases
from m ¼ 0.0 to m ¼ 1.0 for a fixed value of ". This is due to the fact that the increase of "
enhances the fluid acceleration and hence skin-friction coefficient increases. In particular
for m ¼ 0.0, skin-friction coefficient ðCfxRe1=2

x Þ increases approximately 53 per cent as
" increases from 0.50 to 0.90 and when m ¼ 1.0, skin-friction coefficient ðCfxRe1=2

x Þ
increases approximately about 238 per cent as " increases from 0.50 to 0.90. It is clearly

Figure 6.
Effects of 1 and m on
velocity profile for
Pr ¼ 0.7, j ¼ 0.5
and � ¼ 1.0

Figure 7.
Effects of 1 and m on skin
friction coefficient for
l ¼ 2.0 and Pr ¼ 7.0
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evident from the fact that the effect of power-law stretching surface is more prominent on
the skin-friction coefficientðCfxRe1=2

x Þ as compared to uniform motion (m ¼ 0.0).
Figure 8 displays the effects of buoyancy parameter (�) and exponent parameter m

on the skin-friction coefficientðCfxRe1=2
x Þ with the stream wise distance � for, " ¼ 0.4

and Pr ¼ 7.0. The skin-friction coefficient ðCfxRe1=2
x Þ increases with buoyancy

parameter (�) while it decreases with the exponent parameter m. The physical reason
is that the power-law stretching reduces the gradient of the velocity on the surface
F�(�,0). The gradient of the velocity on the surface F�(�, 0) < 0 implies that the fluid is
being dragged by the plate and F�(�, 0) > 0 implies that the plate is being dragged by
the fluid. Due to this negative values of skin-friction coefficient ðCfxRe1=2

x Þ have been
occurred at � ¼ 1.0 when Pr ¼ 7.0, " ¼ 0.4 and m ¼ 1.0. As � increases from � ¼ 1.0
to � ¼ 3.0, the positive skin-friction coefficient ðCfxRe1=2

x Þ is obtained. In particular for
Pr ¼ 7.0 and " ¼ 0.4, the skin-friction coefficient ðCfxRe1=2

x Þ increases about 60 and
200 per cent for m ¼ 0.0 and m ¼ 1.0, respectively, when buoyancy parameter (�)
increases from � ¼ 3.0 to � ¼ 5.0. This signifies the importance of the power-law
stretching surface on the velocity field.

The effects of Prandtl number Pr, buoyancy parameter (�) and exponent parameter m on
the heat transfer rate ðNuxRe�1=2

x Þ are presented with the stream wise distance � for
" ¼ 0.4 in Figure 9. The heat transfer rate ðNuxRe�1=2

x Þ increases with buoyancy parameter
(�), Prandtl number Pr and the exponent parameter m. In particular, for " ¼ 0.4 and
� ¼ 3.0, the heat transfer rate ðNuxRe�1=2

x Þ increases about 160 per cent as Prandtl number
Pr increases from 0.7 to 7.0 when m ¼ 0.0. Further, it is observed that for Pr ¼ 7.0 as �
increases from � ¼ 1.0 to � ¼ 5.0, the heat transfer rate ðNuxRe�1=2

x Þ increases
approximately by 12 and 10 per cent, respectively, when m ¼ 0.0 and m ¼ 1.0.
Furthermore, the heat transfer rate ðNuxRe�1=2

x Þ increases approximately about 105 per cent
as exponent parameter m increases from m ¼ 0.0 to m ¼ 1.0 for � ¼ 1.0 and Pr ¼ 7.0.

5. Conclusions
A detailed numerical investigation was carried out for the mixed convection flow over
a vertical power-law stretching sheet. The governing boundary layer equations were

Figure 8.
Effects of � and m on skin

friction coefficient for
1 ¼ 0.4 and Pr ¼ 7.0
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transformed into a set of coupled non-linear partial differential equations subject to
relevant boundary conditions. The final set of coupled non-linear partial differential
equations was solved using an implicit finite-difference scheme in combination with
the quasi-linearization technique. Conclusions of the investigation are as follows:

. The buoyancy force caused overshoot in the velocity profile for lower Prandtl
number fluid (air, Pr ¼ 0.7) but for higher Prandtl number fluid (water, Pr ¼ 7.0)
the velocity overshoot was not present.

. The effect of the ratio of free-stream velocity to the composite reference velocity
(") was significant on the velocity profile.

. The exponent parameter m resulted in thinner momentum and thermal
boundary layers and reduced the surface temperature.

. The skin-friction coefficient increased with the ratio of free-stream velocity to the
composite reference velocity " and the buoyancy parameter � while it decreased
with exponent parameter m.

. The heat transfer rate increased with the Prandtl number Pr, buoyancy
parameter � and the exponent parameter m.
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